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Abstract

This paper explores heterogeneous effects of automation technologies on employ-

ment rate across regions from different income groups, and investigates mechanisms

through proportion of skilled workers. Automation, measured by both robotic pen-

etration and ICT trade volumes, is replacing US labour force. Exploiting varia-

tions across US commuting zones with different income levels, I find insignificant

employment response in high income areas, while the magnitudes of employment

reductions are more sizeable and significant in low and middle income areas. Lever-

aging shift-share IV strategies and generalised model specifications, further evidence

supports that these patterns can be explained by a simple net job creation chan-

nel, as displacement effects outweigh productivity effects in low income CZs with

lower proportion of skilled labour, and job creations are complementing job destruc-

tions in high income CZs with higher skill shares. Such technical changes are more

pronounced for manufacturing sectors.

JEL classification: E24, J24; O14; O33.

Keywords: Automation; Displacement effects; Productivity effects; Net job creations;

Skill shares.



1 Introduction

In recent years, development economists have regarded automation technologies as an-

other source for persistent economic growth (PwC, 2018), and automation adoption could

lead to positive employment effects. But on the other hand, a substantial body of ev-

idence raised widespread concerns about technological unemployment, which is defined

as job losses within industries due to adoption of automation technologies (Autor, 2014,

2015; Brynjolfsson and Mitchell, 2017; Dauth et al., 2021; Graetz and Michaels, 2017;

PwC, 2018; Sachs and Kotlikoff, 2012; Mitchell and Brynjolfsson, 2017). Therefore, un-

derstanding impacts of automation technologies on labour market outcome at all levels

of analysis, including skill group, metropolitan area, and country, is important.

Despite extensive research, the impacts of technological updating on labour market out-

comes remain debated (Aghion et al., 2017; Autor and Salomons, 2018; Machin and

Reenen, 1998), and little is known about heterogeneous effects with respect to propor-

tion of skilled workers, reflected by regions from different income groups. In this paper, I

leverage comprehensive macro and micro dataset across US commuting zones spanning the

period of 2000 to 2019, to explore the impacts of automation technologies on employment

rate, from the perspective of advanced economies.

In this research, I employ two complementary measures of automation technologies,

namely robotic density and ICT (Information and Communication Technologies) intensity,

based on dataset from International Federation of Robotics (2021), United Nations (2021)

and The Conference Board (2021). Automation technologies are defined as ”any tech-

nology that enables machines, algorithms, capital to perform tasks previously allocated

to humans” (Acemoglu and Restrepo, 2021b). Generally speaking, they are comprised

of three components, including numerical controlled machinery, industrial robots, and

specialised software. For industrial robots, they refer to “an automatically controlled, re-

programmable, and multipurpose machine” (International Federation of Robotics, 2021),

which could cover automation technologies that do not require human instructions and

can automatically operate based on programmed codes (Acemoglu and Restrepo, 2020).

While for ICT investments, they refer to ”acquisition of equipment and computer software

that is used in production for more than one year” (OECD, 2020). In other words, ICT

investments include information technology equipment, communications equipment, and

software, which have substantial overlaps with automation technologies that still require

human corporations.

The conceptual framework builds on the theory of task-based framework (Autor et al.,
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2003; Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2019a). Following Acemoglu

and Autor (2011), technological changes can sometimes do harm to labours, and some-

times benefit labour market outcomes, as degrees of substitutability vary across tasks and

economic activities.

In this article, I advance the hypothesis that impacts of automation adoption on employ-

ment are determined by net job creations between displacement effects and productivity

effects. For regions from low and middle income groups, it is discovered that job losses

induced by technological advances are far more than new job vacancies in other sec-

tors, implying displacement effects outweigh productivity effects. While for high income

areas, productivity effects may contribute to job creations in both existing and new occu-

pations, which could complement job destructions from displacement effects, leading to

non-decreasing employment rate.

This research is related to several empirical studies on the effects of technological adop-

tion on labour market outcomes. The first main contribution is to explore the heteroge-

neous effects across regions from different income groups. Early work focusing on general

measures of technological updating such as TFP (total factor productivity) growth and

patent awards across different types of countries (Autor and Salomons, 2018) are closely

related, but I use two complementary indicators, namely robotic density and ICT in-

tensity. Therefore, such specifications would make it plausible to distinguish between

productivity growth originated from automated and non-automated sectors both within

and across countries.

In the second main contribution, this paper complements studies of the role of skill shares

and industrial structures on net job creation, causing heterogeneous effects from automa-

tion technologies on employment rate. Recent work by Acemoglu and Restrepo (2021a)

estimated the impacts of educational upgrading on the adoption of automation, reflecting

the fact that growing educational attainment could result in scarcity of production work-

ers in blue collar jobs. The rising wages for manufacturing workers along with decline

of participation rate will finally provide great opportunities for automation. This paper

differs from those literature since, rather than workers with low education attainments,

I show that the channel for high skilled labour force could be different. With intensive

growth of high educated workers, supply effect appears to act as main driver of rising

employment, and the effects are more pronounced in manufacturing industries.

For the third main contribution, this paper sheds light on the fact that net employment

effects are mainly caused by differentials in productivity effects measured by job creations,

and job destructions, a good proxy of displacement effects, are prevalent across regions.
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In terms of mechanisms, I complement Acemoglu and Restrepo (2020, 2021b), Bonfigli-

oli et al. (2021), Dauth et al. (2021), and confirm that job creations usually occur for

high skilled workers completing university education, while welfare deteriorations from

unemployment are concentrated in labour force from low skilled groups.

The remainder of the paper is as follows. Section 2 presents conceptual framework. Section

3 describes data sources and stylised facts. Section 4 constructs empirical models, presents

regression results under US evidence, and employs IV approach to tackle identification

threats. Section 5 investigates mechanisms through job creations and job destructions.

Section 6 discusses general results across countries. Section 7 concludes.

2 Conceptual Framework

According to task-based framework developed by Acemoglu and Autor (2011), welfare

effects of automation may vary across occupations with different task contents. In this

section, I illustrate conceptual framework relating productivity effects and displacement

effects from automation technologies, and provide guidance for empirical results.

Firstly, automation does indeed substitute labour, especially for occupations whose tasks

can easily be codified by computer programming (Acemoglu and Restrepo, 2020; Autor,

2013, 2015; Beaudry et al., 2016; Brynjolfsson and Mitchell, 2017; Mitchell and Brynjolf-

sson, 2017; Sachs et al., 2015). Compared with conventional labour force, automation

technologies, represented by robots, have relatively lower price than ordinary wages, thus

firm owners prefer to use robots. The adoption of new technologies could promote re-

allocation between capital and labour within tasks, and accelerate the progress where

tasks previously conducted by labour are gradually taken over by capital, which is called

displacement effect.

The phenomenon of job replacement is pervasive across regions with different income lev-

els. For advanced economies, the positive association between education attainments and

wage levels could provide great opportunities for the adoption of automation technologies

(Acemoglu and Restrepo, 2021a)1. But those who are suitable for analytical or interper-

sonal tasks covers the majority of skilled labours, and such non-routine tasks cannot be

easily codified by computer programming, making machines less capable of substituting

1Recent articles such as Acemoglu and Restrepo (2021b) also examined widening wage inequalities

driven by automation, and highlighted that high skilled workers without job replacement will enjoy wage

gains. Therefore, the firm owners would make further decisions based on rising wages for high skilled

labour and relatively low price of machines.
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workers (Acemoglu and Restrepo, 2020; Acemoglu et al., 2020; Agrawal et al., 2019).

Meanwhile, it is noticed that those high skilled production workers are forced to spend

substantially longer time on transition to other jobs after replacement, resulting in possi-

bly low growth of jobless recoveries across developed countries. Hence such labour market

frictions make it less probable for high skilled labour to lose their jobs.

Alternatively, for emerging market and developing economies, extensive use of cheap

labour suggests higher likelihood of enormous job losses for workers engaged in human-

performed tasks, as such routine tasks could also be performed by other computerised

equipments (Agrawal et al., 2019). Facing exposure to automation technologies, low

skilled workers who are still productive elsewhere could easily switch to other occupa-

tions, while those with limited alternative use are unable to conduct other tasks. In

order to stay in original labour force, they tend to accept relatively lower reservation

wage (Jackson and Kanik, 2019). Compared with workers in high income areas, who are

endowed with alternative labour use, those in low income regions have no choice but to

become ”re-employed” with lower wage levels, offering less opportunities for the adoption

of automation technologies (Acemoglu and Restrepo, 2021a), as economic cost cannot

be ignored even when the technological feasibility could support automation of specific

tasks (Autor, 2013). As a consequence, the narrowed gap of job losses induced by more

substantial ”re-employed” workers in low income areas, makes the displacement effects

pervasive between two regions.

Secondly, automation could also complement labour, and generate several countervailing

forces (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018a; Autor, 2015). On the

one hand, the adoption of automation technologies could reduce production costs where

tasks can easily be automated, leading to overall economic expansion and thus rising

labour demand especially in other non-automated sectors, which is called productivity

effects (Acemoglu and Restrepo, 2018a, 2019b). For instance, smart machines are usually

designed and enhanced by skilled workers (Sachs and Kotlikoff, 2012), and they could

create substantial amounts of labour saving jobs, thus leading to surging labour demand in

other relevant areas. Considering an economy with multiple industries, the development of

automation technologies could also affect aggregate labour demand through composition

effect, as improved efficiency in some tasks could affect demand for downstream products

(Agrawal et al., 2019; Jackson and Kanik, 2019). Induced by general equilibrium effects,

other industries with complementary inputs and tasks on the production steps will also

witness an increase of labour demand (Dauth et al., 2021).

On the other hand, technological updating creates new tasks where labour has compar-

ative advantages (Acemoglu and Restrepo, 2019b; PwC, 2018), and raises corresponding
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labour demand with the help of emerging AI platforms, which is called reinstatement

effect. For example, by reducing uncertainties of predictions, artificial intelligence could

reduce searching and production costs, hence increase relative returns of decision tasks

and boosts labour demand for those specialised in new communication tasks (Agrawal

et al., 2019; Brynjolfsson et al., 2019). The impacts on equilibrium wage are ambiguous,

which are thought to be determined by trade-offs between productivity improvement and

shrinking labour input (Acemoglu and Restrepo, 2018b; Jackson and Kanik, 2019).

Among those countervailing forces, this paper mainly focuses on productivity effects,

namely rising high skilled labour demand in other non-automated sectors. This pattern

of response is supposed to be more pronounced in high income economies, as there is a

rapid takeoff in labour demand for high skilled occupations, triggered by rising consumer

demand for final products (Acemoglu et al., 2020; Akerman et al., 2015; Webb, 2019),

together with increasing amount of skilled labour supply. In contrast, insufficient supply

of such skilled labour force in less developing economies makes automation technologies

not capable of creating such vacancies.

Furthermore, as Figure A1 in the Appendix shows, the widening gap of skill shares across

economies from different income groups, measured by proportion of skilled workers with

tertiary education, reveals that equilibrium employment would be lower for less developing

areas, and strong productivity effects in economically advanced areas may reduce the

likelihood of welfare deterioration.

In summary, it is discovered that heterogeneous impacts of automation adoption on em-

ployment are determined by net job creations between displacement effects and produc-

tivity effects. With growing proportion of high skilled labour, productivity effects tend to

become more pronounced and could contribute to job creations in high income regions,

indicating that new job vacancies could complement job destructions from displacement

effects. While such non-negative employment effects are less likely to be observed in re-

gions from low and middle income groups, induced by strong displacement effects by lower

percentage of high skilled labours.

3 Data and Stylised Facts

In this section, I present data sources and describe stylised facts.
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3.1 Labour Market Outcomes

To relate automation technologies with employment and job creation across US local

labour markets, I follow Acemoglu and Restrepo (2020, 2021a), Autor et al. (2013), Bon-

figlioli et al. (2021), and identify US local labour markets based on the concept of commut-

ing zones (CZs). Introduced by Tolbert and Sizer (1996), 722 commuting zones covering

the US continental territory could better describe strong commuting ties within CZs and

weak commuting ties among them.

In the main analysis, I collect county-level data about employment rate and other de-

mographic characteristics for the period 2000-2019 from Bureau of Economic Analysis

(2021), and aggregate to CZ level. Employment rate is measured as the ratio of employed

workers to whole population with the age of 15 and above. The cutoff of 15 years of age is

motivated by definition of working-age labour force (Acemoglu and Restrepo, 2021a). To

further investigate the determinants of labour market outcomes, I also leverage data on

employment ratio by education and industry groups. Other demographic controls include

total population, proportion of age, gender, race, education, and Census Divisions 2.

Figure 1: Income Level Across Countries, 2000-2020

Notes:

The graph presents trends of GNI per capita for countries from different income groups, and advanced

economies - using data from World Bank (2021).

2Based on geographic locations, the US states are grouped into 4 regions (Northeast, Midwest, South,

West) and 9 divisions (New England Division, Middle Atlantic, East North Central, West North Central,

South Atlantic, East South Central, West South Central, Mountain, Pacific).
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For baseline regression, classification of regions for high, middle and low income groups

are based on personal income per capita, and is comparable to the income percentile

of OECD countries around the world. Figure 1 unpacks the overall trend in GNI per

capita across countries in different income groups, together with US and OECD countries.

Two main facts emerge from the aggregate trends. First, income growth in advanced

economies are substantially higher than that in developing countries. Second, most of

the OECD countries are located around 80 percentiles of the overall income distribution

across countries. Hence, I define CZs from high income group as those which are above

80 percentile of the whole income distribution, low income CZs as the bottom quintile by

personal income per capita, and the rest are treated as middle income regions.

Besides arbitrary classification of income groups, in a more general model, I also explore

the impacts of the interaction between automation technologies and income level, to

investigate smooth changes of the employment effects.

To support the hypothesis that the heterogeneous impacts of automation technologies

on employment are determined by the net job creations, I construct CZ-level measures

of job destruction rates and job creation rates, based on Business Dynamics Statistics

(US Census Bureau, 2021). For each CZs, I observe job destructions, job creations,

number of firms and employees, and detailed industry codes. The change of net job

creation rate for CZ i over period t is then computed as follows:

∆Net JobCreationRateit =
∆JobCreationit −∆JobDestructionit

N(Employees)it
(1)

For cross country analysis, detailed information of macro economic indicators on 216

countries stems from World Bank (2021) for the period 1993-2019. Based on GNI per

capita in current USD, the world’s main economies are assigned to four income groups,

including low, lower middle, upper middle, and high income countries 3, which provide

a subjective classification to investigate heterogeneous effects behind different income

groups. For each country, I observe employment rate along with gender and industry

composition, GDP per capita, total population, total labour force, proportion of adults

and female workers, fertility rates, and regions 4.

3The calculation of GNI per capita is based on the World Bank Atlas method (World Bank, 2021).

For instance, the GNI per capita threshold for low and lower middle income economies in 2020 is $1,045,
and the threshold between lower and upper middle income economies is $4,095; economies with a GNI

per capita above $12,696 are defined as high income economies.
4Based on geographic locations, the sample countries are grouped into 7 groups, including East Asia

& Pacific, Europe & Central Asia, Latin America & Carribean, Middle East & North Africa, North

America, South Asia, and Sub-Saharan Africa.
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3.2 Automation Technologies

I combine the comprehensive labour market dataset with several sources of data on au-

tomation technologies, namely robotic usage and ICT intensity.

The main source of data on robotic usage is International Federation of Robotics (2021),

containing counts of operational stocks and installations of robots for each industry over 72

countries between 1993 and 2019, based on yearly surveys of global robot manufacturers.

For empirical analysis, the main explanatory variable is computed using operational stocks

of robots per thousand labour force. Since International Federation of Robotics (IFR) does

not report data on industry breakdowns regarding robot stocks until 2004 (Acemoglu and

Restrepo, 2020), unclassified components are re-allocated to each industry according to

share of robotic stocks.

The second measure of automation technologies, namely ICT intensity, is motivated by

Acemoglu and Restrepo (2021a), Graetz and Michaels (2017, 2018), Michaels et al. (2014),

Kim et al. (2021), which emphasises the substitutability between ICT and low skilled

workers. Bearing this motivation in mind, I complement the IFR data with US ICT import

and export obtained from bilateral trade statistics of Comtrade database (United Nations,

2021). Trade volumes of re-export are subtracted from final calculations. To address

robustness of the findings, results based on overall import and export of automation

technologies will also be provided.

Since IFR data on operational stocks of robots, and Comtrade data on trade volumes are

available only at the country-by-industry level, I follow Acemoglu and Restrepo (2020),

Bonfiglioli et al. (2021), Dauth et al. (2021), and use a shift share design to allocate robotic

adoptions and ICT trade volumes to each CZs according to their initial employment ratios,

and construct exposure to automation as follows.

∆AutomationExposureit =
∆AutomationUS

t

LabourUS
t

× Employedit0
EmployedUS

t0

(2)

The term
∆AutomationUS

t

LabourUS
t

is five year equivalent changes in robotic density and ICT trade

volume for US over period t, and
Employedit0
EmployedUS

t0

is share of industrial employment of CZ i at

year 2000.

In some of the specifications, I instrument the adoption of automation technologies using

Bartik IV based on average robotic density in other European countries with similar in-

dustrial composition and trade structure. Following Acemoglu and Restrepo (2020), Ben-
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melech and Zator (2022), Bonfiglioli et al. (2021), eight European countries are comprised

of: Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland. Different

constructions using other country combinations are also provided as robustness checks.

The instrument is computed as follows:

∆AutomationIVit =
1

8
× (ΣJ

j

∆Automationj
t

Labourjt
)× Employedit0

EmployedUS
t0

(3)

Similarly,
∆Automationj

t

Labourjt
is five year equivalent changes in robotic density and ICT trade

volume for European country j over period t.

For cross country analysis, I utilise ICT capital data from Total Economy Database of

The Conference Board (2021), which could provide share of ICT capital compensation in

GDP over 125 countries during the period from 1993 to 2019. To attain data on actual

amount of ICT capital, I multiply percentage of ICT capital compensation by GDP. The

ICT intensity is measured by ICT capital values per thousand workers.

3.3 Stylised facts

Now I present a number of facts regarding labour market outcomes and technological

changes across countries over the period of analysis.
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Figure 2: Automation Technologies and Employment Rate for All Countries and OECD Countries, 1993-2019

Notes:

The employment rate, defined as the ratio of employed people and total population who are above 15 years old, is from World Bank (2021). Robot

density refers to operational stock of robots per 10000 labour force, and data about robotic stocks is from International Federation of Robotics (2021).

ICT intensity, defined as ICT capital per 10000 labour force, is from The Conference Board (2021). ICT capital is calculated based on ICT capital

share and GDP measured by constant US dollars. Labour force comprises people ages above 15 who supply labour for the production of goods and

services during a specified period (United Nations, 2020).
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Figure 3: Automation Technologies and Employment Rate for High and Low Income Economies, 1993-2019

Notes:

The employment rate, defined as the ratio of employed people and total population who are above 15 years old, is from World Bank

(2021). Robot density refers to operational stock of robots per 10000 labour force, and data about robotic stocks is from International Federation of

Robotics (2021). ICT intensity, defined as ICT capital per 10000 labour force, is from The Conference Board (2021). ICT capital is calculated based on

ICT capital share and GDP measured by constant US dollars. Labour force comprises people ages above 15 who supply labour for the production of

goods and services during a specified period (United Nations, 2020).
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The relationship between adoption of automation technologies and employment for all

countries are presented in Figure 2. It is clear that both robotic density and ICT intensity
5 are economically significant and negatively correlated with employment rate, implying

that growth of automation technologies is killing the employment across countries. While

evidence from the sample of OECD countries displayed in Panel B and Panel D reveals

positive correlation between automation technologies and employment rate, highlighting

the fact that automation technologies are replacing labour force does not seem to work

in developed countries 6, and productivity effects are probably dominating the process

across rich countries.

Figure 3 turns to unpack the association for areas among different income groups. For

advanced economies, the relationship between robotic density and employment rate is

significantly positive, though the magnitudes of the slope between ICT intensity and em-

ployment rate are slightly lower, implying less complementarity between ICT investments

and labour inputs. Therefore, expanding automation adoption may complement human

labours to some extent, and does not necessarily lead to employment reductions.

While for countries from low and middle income groups exhibited in Panels B and Panel D

of Figure 3, I find employment rate is negatively associated with automation technologies,

and the coefficients are statistically significant 7. These results are consistent with the

hypothesis that job destructions have outweighed job creations in low and middle income

countries.

5Due to large magnitudes for country level robotic data, here the denominator of robotic density is

10 thousand total labour force, while for cross country analysis in Section 6, the denominator becomes 1

thousand working population. ICT intensity is computed following the same procedure.
6According to polarisation evidence in the context of EU and US (Michaels et al., 2014), countries

and industries with fast ICT growth are likely to witness demand shifts from workers with intermediate

education level to college educated workers, and have no clear effects on the least educated groups, causing

less job displacement. Moreover, ICT’s overall contribution to productivity growth is higher relative to

robots (Graetz and Michaels, 2018), implying less labour inputs required for the same amount of output.

In other words, adoption of conventional ICT appears to boost economy through rising TFP instead of job

creations. Driven by low levels of substitutability and complementarity, the graph for OECD countries

reveals a less significant relationship between ICT intensity and employment rate.
7One concern which may lead to measurement errors is informal employment. As suggested by Elgin

et al. (2021), workers in informal sectors constitute about 70 percent of total employment in emerging

market and developing economies. I also present evidence for formal and informal sectors in Figures A2

and A3. The results showed slightly positive relationship with respect to employment in formal sectors,

which specialise in more capital intensive tasks, and overall negative relationship for emerging market

and developing economies is mainly driven by employment responses from informal sectors.
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4 Empirical Framework and Results

In this section, I establish the first empirical implication, and present econometric results

about heterogeneous effects of automation technologies on employment across US com-

muting zones from different income groups. Then I describe identification issues and IV

approach, along with results from alternative automation technologies. Building on this

evidence, I finally investigate the key role of net job creations behind displacement effects

and productivity effects in the next section.

4.1 Regression Model

In the regression analysis, the main specification relating automation technologies and

employment rate is constructed as follows:

∆Employmentit = β0 + β1∆AutomationExposureit + δXi + αi + εit (4)

Following Acemoglu and Restrepo (2020), Bonfiglioli et al. (2021), Dauth et al. (2021), I

estimate Equation 4 by stacking five-year equivalent first differences for four time periods:

2000-2005, 2005-2010, 2010-2015, 2015-2019. Here, ∆Employmentit is the changes in

employment rate for CZ i in over period t, measured by the changes in ratio of employment

to working age population. ∆AutomationExposureit is some proxies of CZ-level exposure

to automation technologies, as defined in Equation 2. Some of the specifications include

Xi, which are geographic fixed effects represented by as region dummies and Census

Divisions, and demographic characteristics such as total population, proportion of age,

gender, race, education. Finally, εit is a heteroscedastic error term.

All the estimates reported in this article, unless noted otherwise, are weighted by the

amount of total labour force in 2000, the initial year covered in the sample data, to avoid

endogenous changes in employment. The primary interest is β1, which captures the link

between dynamics of automation technologies and employment rate. It is expected that β1

could be significantly negative for low and middle income CZs, and significantly positive

or insignificant for CZs in high income group. Overall, the development of automation

technologies corresponds to declining employment to population ratio, with slightly lower

magnitudes, as suggested in Figure 2.
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4.2 Baseline Results

Table 1 presents results for robotic density. Columns 1-5 are regressions of full sample.

Column 1 provides the most parsimonious specification only including year dummies to

account for macro shocks. Column 2 adds baseline demographics Xi. Column 3 also

considers geographic dummies as covariates for regional specific characteristics. Column

4 additionally controls the interactions between state FE and year FE to account for time

varying policy changes across states. To examine the sensitivity of estimates, Column

5 exhibits results using adjusted penetration to robots, taking gross economic expansion

across all sectors into considerations 8, and Column 6 displays results excluding the period

2015-2019. Heterogeneous effects in regions across different income groups are presented

in Columns 7-9.

In all nine columns of Table 1, it is observed that robotic adoption is negatively correlated

with employment responses. All estimates are statistically significant and sizeable. For

the preferred specification in Column 4, the estimated coefficient in robotic density is

-0.705, implying one additional robot per thousand workers tends to reduce employment

rate by 0.71 percentage points.

These findings support the evidence presented in Section 3.3 that displacement effects

may outweigh productivity effects from the perspective of all CZs. Because the amounts

of less developing CZs are substantially higher than that for high income areas, new vacan-

cies induced by rising high skilled labour demand in non-automated sectors in advanced

economies are not capable of absorbing replaced workers and new entrants across US.

8Following Acemoglu and Restrepo (2020), the adjusted penetration of robots is computed as

∆AdjustedRoboticExposureit = (
∆AutomationUS

t

LabourUS
t

− ηit ×
AutomationUS

t0

LabourUS
t

)× Employedit
EmployedUS

t

(5)

where ηit measures growth rate of overall value added in commuting zone i over period t.
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Table 1: Regression of Employment Rate on Robotic Penetration for US, 2000-2019

High Middle Low

Total Income Income Income

CZs CZs CZs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Robotic Penetration -0.522∗∗∗ -0.241∗∗ -0.248∗∗ -0.705∗∗∗ -0.675∗∗∗ 0.016 -1.306∗∗∗ -1.014∗∗∗

(0.117) (0.098) (0.099) (0.213) (0.246) (0.209) (0.154) (0.215)

Adjusted Robotic Penetration -0.203∗∗∗

(0.017)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Time Period 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2015 2000-2019 2000-2019 2000-2019

R2 0.583 0.635 0.635 0.770 0.810 0.782 0.817 0.796 0.640

N of Commuting Zones 722 722 722 722 722 722 143 424 155

N of Observations 2890 2888 2888 2888 2888 2166 572 1696 620

Notes: The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory variable is

changes in robotic density. Other demographics include population, age, gender, race and education. Geographic FE refers to Census

Divisions. The regressions are weighted by total labour force in 2000.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Columns 7-9 turn to results across different income groups. In response to extensive

adoption of automation technologies, I find that employment rate did not experience sig-

nificant changes in high income CZs, implying that new job creations are complementing

employment losses, thus lowering the probability of welfare deteriorations. The estimates

from middle and low income CZs indicate sizeable and robust negative impacts of robotic

density on employment rate. It is observed that 1000 unit increase in robotic stocks per

worker will lead to a drop of 1.31 percentage points in employment rate for middle income

CZs, and that in low income counterparts could generate a displacement effect of 1.01

percentage points. The substantial magnitudes suggest that negative employment effects

are mainly driven by displacement forces from low and middle income CZs.

4.3 Identification Issues

The evidence presented so far strongly suggest that the adoption of automation technolo-

gies, represented by exposure to robots, is killing the employment across US commuting

zones, even after controlling for geographic variations and macro shocks. Such effects

are more pronounced in low and middle income CZs, and insignificant for high income

CZs. Nonetheless, it may not be sufficient to guarantee that the main results can avoid

contamination by endogenous adjustment of local labour force. In this part, I address

identification threats, and then implement a quasi-experimental shift share design to es-

timate the causal effects of automation technologies on US labour market outcomes.

There are several reasons why the development of automation technologies could be cor-

related with error terms in Equation 4. First, firm’s decision to adopt automation may

also be driven by other local industry specific changes, which could directly affect their

labour demand. For example, consumers’ demand shock could motivate firm owners to

invest more capital and labour inputs to produce final goods, hence simultaneously rising

automation and employment (Aghion et al., 2017; Webb, 2019). In addition, common

trade shocks from emerging markets such as China and Mexico may drive the move to-

wards automation (Bloom et al., 2015). Confronting with upward pressure of labour

cost in high income countries, firms from labour intensive industries are inclined to use

automation, making them vulnerable to international competition due to comparative

advantages in labour inputs for emerging market and developing economies, and finally

reduce manufacturing employment (Autor et al., 2013).

Second, any shocks from labour demand and market competition will affect industries’

decisions to locate in specific areas Acemoglu and Restrepo (2020), and individual workers’

adjustments across occupations and regions (Dauth et al., 2021). Affected workers from
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industries with high exposure of automation technologies tend to switch tasks within

original establishments, or move to other firms, especially for young workers or those with

higher education attainments (Dauth et al., 2021). Therefore, such spillover effects will

lead to downward biased estimation of the quantitative magnitudes of both displacement

effects and productivity effects.

Finally, I might worry about reverse causality, as industries with labour saving tech-

nologies and fast growing total factor productivity tend to invest more on automations,

especially for those facing fierce competition and substantial amounts of robotic suppliers

(Beaudry et al., 2016; Graetz and Michaels, 2018). Eventually, such firms are expected

to experience another waves of labour substituting process (Jackson and Kanik, 2019).

4.4 Shift Share IV Research Design

To alleviate potential concerns, I undertake a shift share design as instruments for expo-

sure to automation technologies, which leverages two components: predetermined expo-

sure shares and idiosyncratic shocks. This research design is motivated by several impor-

tant papers from Acemoglu and Restrepo (2020), Aghion et al. (2017), Autor et al. (2013),

Bartik (1991), Bonfiglioli et al. (2021), Bound and Holzer (2000), Dauth et al. (2021),

based on the fact that local labour markets differ markedly in their industry specialisa-

tions and employment concentrations, due to differential endowments and comparative

advantages.

The shifts are obtained from the supply shocks of robotic usage in other European coun-

tries, which can be regarded as an exogenous driver of automation in US (Autor et al.,

2013; Bonfiglioli et al., 2021), as they are unlikely to be intervened by government policies

in the short run. As reflected in Figure 4, the robotic densities across eight European

countries are higher than those in US, implying that European countries, especially those

which are specialised in manufacturing industries like Germany, are technologically more

advanced than US in robotic development (Acemoglu and Restrepo, 2021b), thus the

robotic density in Europe could only affect US labour market exclusively through robotic

adoption in US due to similar industrial structures, as revealed by the parallel pre-trends

before 2000 9 (Borusyak et al., 2021; Goldsmith-Pinkham et al., 2020; Jaeger et al., 2018).

The shift share design combines these sets of shocks with variation in the CZ level of em-

ployment shares, and is constructed as Equation 3.

9It is observed that there is a widening gap between robotic density in US and Germany, and sensitivity

checks excluding Germany in Table 4 also show consistent results.
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Figure 4: Robotic Density Across Countries, 1998-2019

Notes:

The graph presents trends of robotic density for European countries and US - using data from

International Federation of Robotics (2021) and World Bank (2021). Robot density refers to

operational stock of robots per 10000 labour force. The 8 European countries include Austria,

Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland.

Such supply driven components are not liable to reverse casualty (Bound and Holzer,

2000; Graetz and Michaels, 2018). Further, it shuts down unobserved changes in decision

making by firms and workers, implying that it can only influence employment rate through

the channel of the adoption of automation without spillover effects. As for common trade

shocks, I ran regressions of constructed IV on trade volumes and other country level de-

mographics such as age, gender and fertility rates, and displayed the relationship between

predicted outcomes and import and export volumes 10 in Figure A4 in the Appendix.

The t-statistics from both two regressions suggest insignificant association between con-

structed IV and trade shocks. Consequently, this instrumental variable approach makes

this identification highly plausible.

Following Acemoglu et al. (2001, 2019); Aghion et al. (2017), I report the results of

shift share IV design for seven specifications with the same sets of controls Xi in Table

10Motivated by Autor et al. (2013); Bonfiglioli et al. (2021), I select China and Mexico as countries

which have great import competitions with US, and choose Germany, Japan and South Korea as economies

which accounting for large proportion of US export volumes.
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2. The first specification repeats within group estimate for panel data regression with

full controls. The second specification constructs reduced form equation to examine the

correlation between the instrument and outcome variable. The third specification is to

check whether the IV satisfy the condition for relevance through first stage regression.

The final specification reports IV structural estimates.

Table 2 contains IV results for the impacts of robotic penetration on employment. Col-

umn 2 displays reduced form outcomes of the effect of European robotic usage on US

employment rate. The significantly negative estimates show a dramatic reduction in em-

ployment, driven by spillover effects of European robotic technologies from the supply

side, with quantitatively large magnitudes.

Column 3 displays the results for first stage equation of the instrument on robotic density,

which reveals substantial explanatory power of predicted automation exposure for robotic

density. The coefficient in Column 3 suggests that 1000 unit increase in operational stocks

of robots per worker in those European counties corresponds to 1.41 unit increase in US

robotic penetrations, with high F-statistics on the excluded instrument, implying no weak

instrument problems.

Lastly, Column 4 offers the IV estimates of the effects of robotic density on employ-

ment. Instrumenting with predicted robotic penetration, the coefficient of -4.82 indicates

that 1000 unit exogenous rise in robotic stocks per worker is predicted to reduce overall

employment by 4.82 percentage points. The relatively larger absolute magnitude on IV

estimates is consistent with downward endogeneity bias (Acemoglu and Restrepo, 2020;

Dauth et al., 2021), as reallocation forces by both industries and workers in response to

robotic usage could hamper the welfare changes of displacement effects to some extent.
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Table 2: IV Regression of Employment Rate on Robotic Penetration for US, 2000-2019

Within Group Reduced Form First Stage IV Structural Form

(1) (2) (3) (4)

Robotic Penetration -0.610∗∗∗ -4.820∗∗∗

(0.180) (1.799)

Robotic Penetration (Europe) -6.780∗∗∗ 1.407∗∗∗

(1.192) (0.479)

Year FE
√ √ √ √

Demographics
√ √ √ √

Geographic FE
√ √ √ √

State × Year FE
√ √ √

F Statistics 126.37

N of Commuting Zones 722 722 722 722

N of Observations 2888 2888 2888 2888

Notes: The table presents within group and IV estimates of the relationship between robotic penetration and

employment rate in US, where robotic penetration computed using operational stocks of robots from 8 European

countries (Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland) is used as the instrument.

The regressions are weighted by total labour force in 2000. Other demographics include population, age, gender,

race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Employment Effects of Robots and Income Level for US, 2000-2019

Within Group IV Structural Form

(1) (2) (3) (4)

Robotic Penetration -0.610∗∗∗ -1.654∗∗∗ -4.820∗∗∗ -5.036∗∗∗

(0.180) (0.314) (1.799) (1.411)

Robotic Penetration×Income 0.239∗∗∗ 0.904∗∗∗

(0.052) (0.303)

Year FE
√ √ √ √

Demographics
√ √ √ √

Geographic FE
√ √ √ √

State × Year FE
√ √ √ √

N of Commuting Zones 722 722 722 722

N of Observations 2888 2888 2888 2888

Notes: The table presents within group and IV estimates of the relationship between robotic penetration and

employment rate by income level in US, where robotic penetration from 8 European countries is used as the

instrument. The regressions are weighted by total labour force in 2000. Other demographics include population,

age, gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.5 Robots and Employment by Income Level

To account for smooth changes of the employment effects, I also include interaction term

between automation technologies and income level for IV estimation. The structural form

is then estimated as follows:

∆Employmentit = β′
0 + β′

1∆ ̂AutomationExposureit

+ β′
2∆ ̂AutomationExposureit × Incomeit

+ δXi + αi + αt + εit

(6)

where Incomeit is average value of personal income per capita in CZ i at year t, and

∆ ̂AutomationExposureit is predicted based on first stage estimation:

∆ ̂AutomationExposureit = π0 + π1∆AutomationIVit + δXi + αi + αt + εit (7)

Hence β′
1 from Equation 6 captures evolution of employment effects along with levels of

income.

Table 3 presents within group and IV estimates based on Equations 4 and 6. Compared

with baseline results displayed Column 1, Columns 2 turns to results using interactions

between robotic exposure and continuous levels of income. More interestingly, the positive

coefficient estimate of interaction term reveals that rising income level could slow down

negative employment effects of robotic adoption. Instrumented with the shift share IV,

Columns 4 indicates that 1 extra unit in robotic stocks per thousand workers tends to

reduce employment rate by 5.04 percentage points. Further, the coefficient estimate for

interaction term is 0.90, highlighting the flattening effects of regional economic growth.

This reveals that a $5000 increase in personal income per capita, which is roughly the

gap between the threshold of high income CZs ($30443) and low income CZs ($24868),
will cause a decline of 0.45 percentage points of employment reductions in response to

extensive robotic penetrations in high income CZs.
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Table 4: Employment Effects of Robots and Income Level using Alternative IV, 2000-2019

(1) (2) (3) (4) (5) (6)

Robotic Penetration -5.036∗∗∗ -3.705∗∗∗ -6.242∗∗∗ -7.370∗∗ -3.815∗∗∗ -4.750∗∗∗

(1.411) (1.150) (2.228) (3.616) (1.007) (1.267)

Robotic Penetration × Income 0.904∗∗∗ 0.630∗ 1.098∗∗∗ 1.233∗∗ 0.654∗∗ 0.850∗∗∗

(0.303) (0.356) (0.372) (0.484) (0.272) (0.300)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the relationship between robotic penetration in US and employment rate, where robotic

penetration computed using operational stocks of robots from European countries is used as the instrument. Column 1 is based on data

from Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland; Column 2 is based on data from all European countries;

Column 3 is based on data from Denmark, Finland, France, Italy, Sweden, Germany; Column 4 is based on data from Spain, Finland,

France, Italy, Norway, Sweden, UK; Column 5 is based on data from Denmark, Netherlands, Italy, Sweden, UK; Column 6 is based on

data from Austria, Denmark, Finland, France, Germany, Italy, Netherlands, Spain, Sweden, Switzerland, UK. Other demographics include

population, age, gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

22



Taking the role of economic corporations and sectoral compositions among western coun-

tries into accounts, Table 4 presents sensitivity checks under different constructions, in-

cluding specifications using all European countries, one using five European countries 11

(Acemoglu and Restrepo, 2020), and one also considering Spain and UK (Bonfiglioli et al.,

2021) 12. These do not qualitatively alter the results. The IV estimates indicate sizeable

and robust negative impacts of robotic exposure on employment rate, and those negative

employment effects will gradually diminish, confronted with rising levels of income.

4.6 Alternative Automation Technologies

In this subsection, I continue to investigate how exposure to other automation technologies

has affected employment rate in CZs from different stages of economic growth. In order

to gauge the robustness of the results, I estimate Equation 6 with trade volumes of goods

containing ICT and overall automation technologies as dependent variables.

I present corresponding IV estimates of the impacts of ICT import and export under the

same specifications in Table 5, respectively. All the estimates are strong and significant.

Instrumented with predicted exposure of robotic usage, it is revealed in Columns 1 and 3

that 1000 dollars increase in ICT import exposures will lead to falling employment rate of

0.32 percentage points, and export counterparts could generate a displacement effect of

0.67 percentage points. The implications with regard to interactions of automation and

income level do not qualitatively alter the results. Consistent with Subsection 4.4, the

estimates for in Columns 2 and 4 are significantly positive, confirming flattening effects

of economic development. The estimated quantitative magnitudes for trade volumes of

ICT and the whole automated machines are similar to those exhibited so far.

Overall, these findings are broadly consistent with the stylised facts in Section 3.3, and

support our empirical implications on the relationship between automation technologies

and employment.

11The five European countries are Denmark, Finland, France, Italy, Sweden. As robotic density is more

pronounced in Germany, which acted as a leading country in manufacturing and robotic usage (Dauth

et al., 2021), so I exclude Germany.
12Taking trade structures into accounts, I also implement robustness checks based on Austria, Denmark,

Finland, France, Germany, Italy, Netherlands, Spain, Sweden, Switzerland, UK.
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Table 5: Employment Effects of Other Automation and Income Level in US, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8)

ICT Import -0.317∗∗∗ -1.367∗∗∗

(0.104) (0.418)

ICT Export -0.670∗∗∗ -2.103∗∗∗

(0.184) (0.499)

Automation Import -0.199∗∗ -1.686

(0.080) (1.404)

Automation Export -0.196∗∗∗ -0.664∗∗∗

(0.054) (0.162)

ICT Import × Income 0.262∗∗∗

(0.081)

ICT Export × Income 0.394∗∗∗

(0.095)

Automation Import × Income 0.329

(0.276)

Automation Export× Income 0.126∗∗∗

(0.031)

Year FE
√ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the relationship between ICT and automation trade volumes in US and employment rate, where robotic

penetration computed using operational stocks of robots from 8 European countries (Austria, Denmark, Finland, Germany, Italy, Spain, Sweden,

Switzerland) is used as the instrument. The regressions are weighted by total labour force in 2000. Other demographics include population, age,

gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Business Dynamics, Robotic Penetration and Income Level for US, 2000-2019

∆ Job Destruction Rate ∆ Job Creation Rate ∆ Net Job Creation Rate

(1) (2) (3) (4) (5) (6)

Robot Penetration 1.374 1.495 -2.864∗ -3.170∗∗ -4.238∗ -4.665∗∗

(1.765) (1.869) (1.533) (1.232) (2.449) (2.108)

Robot Penetration × Income -0.192 0.484∗∗∗ 0.676∗∗

(0.267) (0.182) (0.306)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of robotic penetration on changes of job destruction rate, job creation rate and net job

creation rate, where robotic penetration computed using operational stocks of robots from 8 European countries is used as the instrument.

Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5 Mechanism

Having studied the heterogeneous effects of automation technologies on local labour mar-

ket outcomes, I shift the focus to investigate the mechanisms behind the effects of tech-

nological changes.

As suggested in the Section 2, the phenomenon of job replacement is pervasive across

regions with different income levels, while welfare improvements induced by productivity

effects are more pronounced in high income regions, and could complement job losses by

displacement effects. In this section, I utilise the availability of comprehensive panel data

across US CZs, to explore the relationship between automation technologies and net job

creations, and discover what kind of jobs could be created or replaced. For the remainder

of this suction, I will on focus on IV estimates.

5.1 Automation and Reduced Job Creation

As a starting point, I provide several pieces of evidence linking adoption of automation

technologies, with changes in job destruction rate, job creation creation rate and net job

creation rate, and estimate the equation of the following form.

∆Jobit = γ0 + γ1∆AutomationExposureit

+ γ2∆AutomationExposureit × Incomeit + δXi + αi + αt + εit
(8)

Contrary to Equation 6, the left hand side variable ∆Jobit of Equation 8 denotes changes

in job destruction rate, job creation rate and net job creation rate in for CZ i over

period t, where the denominator is the overall number of employees for 2000, the initial

year of analysis. Other variables of this five-year stacked first difference model share the

same specifications as described in Section 4.4. Specifically, I also control for interactions

between year fixed effects and firm quartiles, to account for evolution of establishments

affiliated with different firm sizes.

Table 6 reports results of Equation 8, where exposure to automation technologies, rep-

resented by US robotic penetrations, is instrumented by European counterparts. Con-

ceptually, I distinguish between job destructions and job creations, and characterise the

consequences of both displacement effects and productivity effects.
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As displayed in Columns 1-2, the insignificant estimates for the impacts of robotic den-

sity on changes of job destruction rate across CZs reveal that technological job losses

are pervasive across regions with different income levels. These results confirm that au-

tomation technologies could replace production workers irrespective of stages of economic

growth, proxied by personal income per capita. Columns 3-4 document the impacts on

job creations. The point estimate for all CZs is statistically significant at 10 percent with

a coefficient of -2.86, implying a rise of robotic stocks per thousand workers could lower

job creation rate by 2.86 percentage points. The positive coefficient for interaction with

income level, displayed in Column 4, suggests that new vacancies created by productivity

effects could gradually complement technological job losses, especially for economically

advanced areas. Furthermore, the coefficients for net job creations in Columns 5-6 are

substantially larger in absolute magnitude, which bolster the interpretation that displace-

ment effects of automation technologies in low income CZs could act as key drivers for

overall decline of net job creation rate. Meanwhile, stronger productivity effects in high

income CZs cause slightly weaker power of job replacement.

All columns in Table 7 turn to only focus on changes of net job creation rate, which

present results for ICT import and export, and automation trade volumes as alternative

measures of automation technologies. Though less precisely estimated, I also find more

pronounced reduction of job creation rate for low income CZs relative to other regions,

and the phenomenon of job losses diminishes with rising income level, which robustly

support the hypothesis before.

In summary, these results indicate that displacement effects are pervasive across areas, and

final employment outcomes are determined by differentials in productivity effects, proxied

by job creations. I next turn to a detailed investigation of other empirical implications

with respect to skill composition.
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Table 7: Net Job creation Dynamics, Other Automation Technologies and Income Level for US, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8)

ICT Import -0.083∗∗ -1.116∗∗∗

(0.036) (0.409)

ICT Export -0.203∗∗ -1.681∗∗∗

(0.089) (0.590)

Automation Import -0.042∗∗ -1.156

(0.019) (0.714)

Automation Export -0.059∗∗ -0.528∗∗∗

(0.026) (0.186)

ICT Import × Income 0.207∗∗∗

(0.077)

ICT Export × Income 0.316∗∗∗

(0.112)

Automation Import × Income 0.207

(0.130)

Automation Export × Income 0.100∗∗∗

(0.035)

Year FE
√ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of other automation technologies on changes of net job creation rate, where robotic

penetration computed using operational stocks of robots from 8 European countries is used as the instrument. Explanatory variables include

importation and exportation of ICT equipments and automation technologies. Other demographics include number of firms, population, age,

gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.2 Skill Upgrading and Net Job Creation

I have documented the presence of net job creations behind the employment effects of

automation technologies. In this subsection, I present additional results, highlighting what

kind of jobs could be created (replaced) by automation technologies. Since regressions

adopting alternative measures such as ICT and automation trade volumes also generate

similar results, I will only focus on the impacts from robotic usage. Table 8 estimates

the following regression model, where I interact robotic penetration with skill shares and

personal income per capita:

∆Jobit = γ′
0 + γ′

1∆RobotExposureit + γ′
2∆RobotExposureit × SkillShareit

+ γ′
3∆RobotExposureit × SkillShareit × Incomeit

+ δXi + αi + αt + εit

(9)

where ∆RobotExposureit is CZ-level exposure to robotic usage. I use SkillShareit, mea-

sured by the proportion of workers who received university or high school education, to

describe geographic disparities of skill upgrading across US CZs. Therefore, γ′
2 can be

interpreted as the mitigating effects of skill share, during the dynamics of net job creations

induced by robotic penetration, and γ′
3 depicts the evolving forces of skill upgrading along

with economic development.

The results for both university and high school educated workers are reported in Table 8.

Column 1 replicates IV estimates of robotic exposure on employment. Columns 2-3 include

the interaction of robotic usage and skill shares. The point estimates for interaction with

proportion of both two types of skilled labour are statistically significant at 5 percent with

a coefficient of 0.01, implying a rise of percentage of high school and university educated

workers could mitigate decline of net job creation rate by 0.01 percentage points. The

evidence is also consistent with the hypothesis before, as productivity effects induced by

high skilled labour tend to become more powerful, and could complement job losses by

displacement effects.

In Columns 4-5, I continue to examine the heterogeneity across CZs at different stages of

economic development. Strikingly, the negative coefficients for interactions with both skill

share and income level exhibit that the importance of mitigation effects from skill shares

are diminishing. This pattern is consistent with rule of diminishing marginal returns, as

for economically more advanced areas, capabilities of learning by doing and labour market

experience could play a relatively more substantial role for high-skill tasks, compared with

human capital accumulation (Stinebrickner et al., 2019).
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Table 8: Net Job creation Dynamics and Robots by Skill Share for US, 2000-2019

(1) (2) (3) (4) (5)

Robotic Penetration -4.238∗ -4.614∗∗ -3.398∗∗ -11.941∗ -3.668∗

(2.449) (2.114) (1.543) (7.158) (2.121)

Robotic Penetration 0.007∗∗ 0.072∗

× %High School Educated Worker (0.003) (0.042)

Robotic Penetration 0.012∗∗ 0.069∗

× %University Educated Workers (0.005) (0.037)

Robotic Penetration × Income -0.009∗

× %High School Educated Workers (0.005)

Robotic Penetration × Income -0.009∗

× %University Educated Workers (0.005)

Year FE
√ √ √ √ √

Demographics
√ √ √ √ √

Geographic FE
√ √ √ √ √

State × Year FE
√ √ √ √ √

Firm Size × Year FE
√ √ √ √ √

N of Commuting Zones 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of robotic penetration on changes of net job creation

rate, by skills share and income level, where robotic penetration computed using operational stocks of robots

from 8 European countries is used as the instrument. Other demographics include number of firms,

population, age, gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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The findings reflect the fact that automation technologies are killing low skilled employ-

ment for workers without high school degrees, and bring welfare improvements for high

skilled workers with tertiary and university education. Coupled with detailed investi-

gation of the role of income level, it is recognised that the slowdown effects of net job

creation reductions are more pronounced for CZs with high percentage of university ed-

ucated workers, illuminating that new occupations are mainly created for high skilled

workers.

5.3 Structural Change and Net Job Creation

Lastly I go one step further, and discover various patterns of employment effects of au-

tomation technologies across six broad sectors. In contrast to Equation 9, I modify the

econometric model as follows:

∆Jobit = γ′′
0 + γ′′

1∆RobotExposureit

+ γ′′
2∆RobotExposureit × Industry Shareit

+ γ′′
3∆RobotExposureit × Industry Shareit × Incomeit

+ δXi + αi + αt + εit

(10)

where Industry Shareit is defined as the ratio of value added for a given sector and overall

GDP. Based on IFR classifications (International Federation of Robotics, 2021), those six

broad sectors include manufacturing, agriculture, mining, utility, construction and R&D

activities.

Table 9 displays the estimation results. As reflected in Columns 1-2, increases in robotic

density are systematically associated with declining net job creation rate given GDP share

of manufacturing. With a rise of percentage of manufacturing GDP, the displacement

effects of robots on net job creations would be mitigated by 0.02 percentage points, and

the absolute magnitudes of marginal effect are diminishing along with personal income per

capita. Surprisingly, estimates for other sectors in remaining columns are insignificant.

This evidence indicates that new vacancies created by productivity effects could absorb

production workers from manufacturing industries, and high income CZs with growing

high skilled task requirements would experience a slowdown of net job creations.

In all cases, the results confirm that net job creations play a key role in heterogeneous

effects of automation technologies on labour market outcomes, and technical updating is

biased against unskilled workers and those in manufacturing industries.
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Table 9: Net Job creation Dynamics and Robotic Penetration by Industry for US, 2000-2019

(1) (2) (3) (4) (5) (6) (7)

Robot Penetration -4.238∗ -4.613∗∗ -4.841∗∗ -4.678∗∗ -4.729∗∗ -5.948∗ -4.171∗∗

(2.449) (2.128) (2.274) (2.126) (2.147) (3.349) (1.983)

Robot Penetration 0.022∗

× %Manufacturing GDP (0.012)

Robot Penetration× -0.005

%Agriculture GDP (0.005)

Robot Penetration 0.002

× %Mining GDP (0.003)

Robot Penetration 0.003

× %Utility GDP (0.007)

Robot Penetration 0.034

× %Construction GDP (0.033)

Robot Penetration 0.151

× %R&D GDP (0.098)

Robot Penetration× Income -0.004∗

× %Manufacturing GDP (0.002)

Robot Penetration × Income 0.001

× %Agriculture GDP (0.001)

Robot Penetration × Income -0.000

× %Mining GDP (0.001)

Robot Penetration × Income -0.001

× %Utility GDP (0.001)

Robot Penetration × Income -0.006

× %Construction GDP (0.006)

Robot Penetration × Income -0.028

× %R&D GDP (0.018)

Year FE
√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722

N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of robotic penetration on interactions between changes of net

job creation rate and proportion of GDP by industry, where robotic penetration computed using operational stocks

of robots from 8 European countries is used as the instrument. Other demographics include number of firms,

population, age, gender, race and education. Geographic FE refers to Census Divisions.

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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6 Further Discussion

So far, I have looked at the employment effects and net job creations of automation

technologies across US CZs. In the final step of analysis, I discuss implications for cross

country evidence.

The specification relating automation technologies and employment rate is constructed

as follows:

Employmentit = β′′
0 + β′′

1AutomationExposureit

+ β′′
1AutomationExposureit × Incomeit

+ δXi + αi + αt + εit

(11)

Here, Employmentit is employment rate for country i in year t. AutomationExposureit is

some proxies of automation exposures, including robotic density calculated by operational

stocks of robots per thousand workforce, and ICT intensity calculated by ICT capital

values per thousands of full time workers. Incomeit is GNI per capita in country i at year

2019 13. Regressions are weighted by initial amount of total labour force. Other covariates

Xi capture geographic fixed effects represented by region dummies, and demographic

characteristics such as population and GDP. εit is a heteroscedastic error term.

Table 10 presents main results for robotic density and ICT intensity with full controls.

Column 1 indicates that robotic density is negatively correlated with employment rate.

All estimates are statistically significant and sizeable. The coefficient estimate in robotic

density is -0.454, implying one more robot per thousand workers tends to reduce employ-

ment rate by 0.45 percentage points. While Column 2 suggests that 1 extra dollar in GNI

per capita could mitigate employment reductions 0.07 percentage, indicating that the neg-

ative employment responses induced by robotic adoptions tend to be more pronounced in

low income countries, and with growing GNI per capita, employment rate in high income

countries rises sharply in response to extensive adoption of automation technologies. The

estimates for ICT intensities displayed in Columns 3-4 are comparable to the direction of

those for robotic densities 14.

In summary, the fact that automation technologies are killing the employment still holds

13I use GNI per capita in 2019 as there are missing values in previous years. Regression results based

on income level in 1993 are also consistent with Table 10.
14The reason about small magnitudes of employment effects from ICT intensities are described in

footnotes of Section 3.3.
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for cross country analysis. I find that productivity effects are more pronounced for de-

veloped countries with high income levels. In contrast, negative employment effects are

much stronger in low and middle income countries, as rising demand of high skilled labour

in other non-automated sectors is not capable of compensating job losses induced by au-

tomation technologies.

Table 10: Employment Rate and Automation Across Countries, 1993-2019

(1) (2) (3) (4)

Robotic Density -0.454∗∗ -1.423∗∗∗

(0.210) (0.189)

Robotic Density × Income 0.068∗∗∗

(0.007)

ICT Intensity -0.013∗∗∗ -0.011∗∗∗

(0.004) (0.004)

ICT Intensity × Income 0.028∗∗∗

(0.005)

R2 0.673 0.789 0.497 0.579

N of Countries 64 64 107 107

N of Observations 1686 1686 2866 2866

Geographic FE
√ √ √ √

Year FE
√ √ √ √

Geographic × Year FE
√ √ √ √

Demographics
√ √ √ √

Notes: The regressions are weighted by total labour force in 1993. Independent variables are robotic

density and ICT intensity. Other baseline controls include country level demographics such as

population and GDP. Geographic FE refers to region dummies.

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Overall, these findings are broadly consistent with US evidence. Nonetheless, lack of iden-

tification strategies is potentially puzzling, making it hard to disentangle spillover effects

and other endogenous factors. A more in-depth research uncovering exogenous variation

of penetration to automation technologies across countries is a promising direction for

future empirical implications.

7 Conclusion

Automation seems to influence differently employment depending on the income level of

each country or region. This paper leverages comprehensive CZ level data to provide a
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unified analysis regarding the impacts of automation technologies on employment rate in

US, and investigates mechanisms based on responses of workers with different skill levels

and industries under forces of displacement effects and productivity effects.

The article focuses on US evidence. I find that rising penetration of automation tech-

nologies, including industrial robots and ICT trade volumes, corresponds to reductions in

employment rate across all commuting zones. The magnitudes of negative employment

response are more sizeable and significant in low and middle income areas, implying that

displacement effects are dominating the process of technology updating. While mitigating

effects of income level suggest that productivity effects may flatten welfare deteriorations

by displacement effects.

Motivated by the conceptual framework, these patterns can be explained by a simple net

job creation channel. After adopting automation technologies, it is witnessed that job

replacement occurs across all regions. For high income CZs, new vacancies are created in

other non-automated sectors, where high skilled labour forces are required in most cases,

and higher proportion of skilled workers with university education raises the possibility

of successful matches. Nonetheless, relatively lower percentage of skilled workers in low

and middle CZs could not provide great opportunities for such job creations, leading to

substantial employment losses. As a consequence, growing income level could depress the

absolute magnitudes of negative employment effects, and reduce the welfare deterioration

to some extent. Encouragingly, the analysis reveals that such technological change is

biased against low skilled workers (Graetz and Michaels, 2018), and causes welfare im-

provement for high skilled workers, as new occupations are mainly created among labour

force completing university matriculation. Taking structural change into accounts, it is

uncovered that areas with large proportions of manufacturing GDP could benefit from

productivity effects.

Moreover, regression results from cross country analysis point out the potential to gen-

eralise the implications for worldwide economic growth. With novel datasets and appro-

priate identification strategies, I believe both empirical studies exploring heterogeneous

effects under other institutional settings, and theoretical models incorporating roles of

skill upgrading, would therefore be a promising direction for future research.
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Appendix

Figure A1: Evolution of Labour Force with Advanced Education, 2000-2019

Notes:

The graph presents proportion of skilled labour force, defined as those who received tertiary education, for countries from different income

groups - using data from World Bank (2021).
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Figure A2: Automation Technologies and Informal Employment for Low and Lower Middle Income Group, 1993-2019

Notes:

The employment rate for formal and informal sectors are from Elgin et al. (2021). The operational stock of robots is based on

International Federation of Robotics (2021), and ICT intensity is from The Conference Board (2021). Employment rate is the ratio of

employed people and total population who are above 15 years old. Robot density refers to operational stock of robots per 10000 labour

force. ICT intensity refers to ICT capital per 10000 labour force. Labour force comprises people ages above 15 who supply labour for the

production of goods and services during a specified period (United Nations, 2020).
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Figure A3: Automation Technologies and Informal Employment for Middle Income Group, 1993-2019

Notes:

The employment rate for formal and informal sectors are from Elgin et al. (2021). The operational stock of robots is based on

International Federation of Robotics (2021), and ICT intensity is from The Conference Board (2021). Employment rate is the ratio of

employed people and total population who are above 15 years old. Robot density refers to operational stock of robots per 10000 labour

force. ICT intensity refers to ICT capital per 10000 labour force. Labour force comprises people ages above 15 who supply labour for the

production of goods and services during a specified period (United Nations, 2020).
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Figure A4: Predicted Robotic Density and Trade Volumes, 2000-2019

Notes:

The graph presents relationship between predicted robotic density and trade volumes - using data from International Federation of

Robotics (2021), World Bank (2021) and United Nations (2021). The predicted robotic density is obtained based on regression of European

robotic adoption on trade volumes and country level demographics. European robotic adoption is computed using ratio operational stocks

of robots from 8 European countries (Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland) and total labour force.

Import volumes from China and Mexico, and export volumes to Germany, Japan and South Korea are measured in million USD.
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